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ABSTRACT

Ocean internal waves induce magnetic fields by virtue of

motion of conducting sea water relative to the geomagnetic field.

Measurements of such internal wave induced magnetic fields by
0sensitive magnetic instruments below the ocean surface require

use of a protective enclosure or buoy. In this paper an anal-

ysis is presented of the effects of the enclosure on the mag-

netic fields and their spatial gradients when the enclosure

(buoy) is spherical.

Explicit analytical results are presented for the magnetic

field and the magnetic field gradients for the case in which

* the sphere'radius is small both in relation to the spatial

period of the internal wave field and in relation to the depth
at which the buoy is submerged. In addition, analytical results

are presented for the temporal spectra of magnetic field gradi-

ents as these would be measured within the buoy when towed at
speeds substantially greater than the maximum group velocity of

the internal wave field.
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I. INTRODUCTION AND SUMMARY

The measurement of magnetic fields and magnetic field gra-

dients in the ocean that are induced by the relative motion of

sea water with respect to the geomagnetic field typically re-

quires that the measuring instrument be enclosed in a measure-

ment chamber or buoy. For example, when the instrument is a

superconducting gradiometer (SQUID sensor) the minimal enclosure

would be the cryogenic unit itself. The major contributors to

the induced magnetic fields are believed to be ocean surface

waves and internal waves, the latter providing the dominant con-

tribution at frequencies below about 1 mHz for a moored sensor.

Whereas formulas for computing the induced magnetic fields in

the ocean are available Ell, no analysis appears to have been

carried out for estimating the effects of the enclosure on the

detected magnetic field.

Basically, the buoy would introduce two types of disturb-

ances: fluctuations of the magnetic field arising from the

localized flow pattern dictated by the hydrodynamic properties

of the buoy, and perturbations due to the sea water-air discon-

tinuity at the boundary of the enclosure. The latter effect

arises from the requirement that the normal component of electric

current as well as the normal component of velocity vanish at

the buoy surface.

The induced magnetic field within the buoy is determined

essentially by an integral taken over the entire volume occupied

by the velocity field exterior to the buoy. If, as would nor-

mally be the case, the volume occupied by the internal wave

field is much larger than that occupied by the local flow around



the buoy, it is reasonable to suppose that the contribution to

the induced magnetic field from the local flow velocity field

may be neglected.

A more severe perturbation would be that due to the discon-

tinuity at the buoy bounding surface. One readily convinces

himself of the importance of this effect if one recalls that

the asymmetry of the gradients of the magnetic field in the

water is removed once the measurement is carried out in air

(i.e., within the buoy): rotating the axis of a hypothetical

SQUID sensor in air by 90 deg would produce no change in the

measured gradient, whereas different results would be obtained

if such a rotation were carried out in sea water. This is

simply a consequence of the fact that the curl of the induced

magnetic field vanishes identically in air, but not in sea

water, where there exist localized electric currents.

In this paper an analysis is presented of the effects of

the discontinuity at the buoy walls on the magnetic fields and

gradients induced by internal waves in the ocean. An exact

solution for the fields within a buoy of arbitrary shape appears

rather difficult. Here, for simplicity, the buoy is modeled as

a sphere. Although this shape hardly constitutes a practical

contour for a submerged instrument package, it does provide a

fairly tractable model for estimating the general trend of the

boundary effects. In addition, the methodology can provide

guidance for future analyses of more realistic shapes. Even

in the case of the sphere, an exact solution is not trivial.

The approximations underlying the present analysis are that the

sphere radius is small by comparison with the spatial wavelength

of the unperturbed internal wave field and by comparison with

the depth of the buoy below the ocean surface.

The first of these two approximations is equivalent to

assuming that the unperturbed internal wave field is essentially

constant over the volume of sea water displaced by the buoy.
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For spatial wavelengths of principal interest herein (1,000

to 100 meters), this is certainly a reasonable assumption.

The technique of solution involves a perturbation expan-

sion in ascending powers of the sphere radius. When the sphere

radius is small in relation to the spatial period of the hydro-

dynamic flow field, only the first term of the perturbation

expansion needs to be retained. For notational convenience,

in the analytical development only the radius of the sphere a,

rather than the dimensionless ratio a/X is referred to explic-

itly as the small expansion in parameter. (See discussion on

p. 44 following Eq. (122)).

In Section II the general mathematical framework is set

forth. The rationale for the perturbation technique is devel-

oped in Section III and Appendix A. In Section IV an expres-

sion for the magnetic field is obtained which is valid in the

zeroth order approximation. The final result is embodied in

Eq. (72), which appears to bear a strong resemblance to the

well-known "cavity" definition of electromagnetic field quanti-

ties in an extended medium. A formula for the "correction"

term involving the internal wave parameters explicitly is given

by Eq. (83), while the corresponding unperturbed field compo-

nents (i.e., in the absence of the buoy) are given by Eq. (78).

These results show that the perturbation of the field due to

the buoy boundary is of the same order of magnitude as the

original field in the ocean.

In the zeroth order approximation the field is constant

within the buoy. Thus, in order to estimate the spatial gra-

dients, the next higher-order term must be retained in the per-

turbation expansion. The analysis is carried out in Section V.

The final result is given by Eq. (122). In Section VI this

formula is employed in the computation of magnetic field gradi-

ents, the general formula for which is Eq. (124). Despite its

complexity, the result admits of a simple physical interpreta-

3
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tion: the effect of the enclosure is to symmetrize the unper-

turbed gradient and to add a rotational shear term. The symme-

trization is in the form 1/2[G( ) + G(P)], where G( P ) is thepq qp pq
gradient of the q-th component of the magnetic field in the

direction p, in the absence of the buoy. As noted earlier,

G (P ) p G (P ) in sea water, whereas in the buoy the gradients must
pq qp

be symmetric in the indices by virtue of the vanishing of the

curl of the magnetic field in air. The net effect of the shear

term is harder to interpret. In some numerical calculations

performed thus far it appears to be small.

Equation (135) translates (124 ) into a formula in which

the dependence on the internal wave parameters is made explicit.

Unlike in the case of the magnetic field, Eqs. (78) and (83),

the formula for the gradients cannot be interpreted as a sum

of an unperturbed quantity plus a perturbation term. Equation

(135) is used in Section VII to compute the correlation func-

tion functions and spectra for ocean internal waves. Both

moored and towed situations are considered. In the latter case

the fast tow approximation is employed in conjunction with the

hypothesis of Milder as given in [1]. The final formulas, al-

though quite cumbersome in appearance, reduce the computation

to a series of quadratures involving the V~isl4 frequency.

The detailed sequence of steps required to implement the spec-

tral calculations on a computer are presented in Appendix C.

Only a few numerical calculations using the theory here

developed have thus far been carried out. Figure 1 shows some

preliminary results for a unidirectional single frequency inter-

nal wave. The Vgisal frequency profile is assumed exponentially

decreasing with the maximum Vgisal frequency of .833 mHz at the

ocean surface and a decay constant of 1300 m. A first mode

internal wave of 1 meter maximum amplitude and a wavelength of

200 meters (frequency .716 mHz) is assumed. The amplitude of

the internal wave displacement as a function of depth is indi-

cated by the broken curve (peak at about 100 m depth).

4
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The spectral peak of the gradient is plotted for an integration

time of 1000 sec (Vais~lg period 1200 sec). The geomagnetic

field is assumed purely horizontal (equatorial zone) and along

the x direction (Fig. 2). The direction of travel of the inter-

nal wave relative to the geomagnetic field is denoted by w in

the figure. (w = 0, wave direction along the geomagnetic field,

w = w/2, wave direction normal to the geomagnetic field). The

gradients are defined as follows: component xy is the derivative

of the y (vertical) component of the field along the x direc-

tion. (The coordinate system is shown in Fig. 2.)

6
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II. FORMULATION OF THE PROBLEM

The sea surface is assumed to be plane and sea water

occupies the region y < D, shown in Fig. 2. At a depth D we

assume a spherical enclosure of radius a, which, to the first

approximation, constitutes our model for a buoy containing the

magnetic sensing instrument (e.g., a superconducting gradiom-

eter). For the purpose of the following analysis the interior

of the buoy is filled with air. Our objective is to obtain, in

the interior of the spherical enclosure, an approximation to

the magnetic field and its spatial gradients that are induced

by the interaction of ocean internal waves with the geomagnetic

field. Analytical results for computing the induced magnetic

field in the ocean in the absence of an enclosure are presented

in [1]. The analysis presented herein relies heavily on the

results and notation employed in Ell. As in [l], we shall be

interested only in internal waves with periods much shorter

than the inertial period. Consequently, the vorticity vector

w(r,t) can be assumed parallel to the ocean surface. We denote

by V(r,t) the fluid velocity so that

w(r,t) - V x V(r,t). (1)

We make the usual incompressibility assumption and express the

fluid velocity in terms of the vector stream function V(r,t),

viz.,

V(r,t) - V x *(rt). (2)

Unless germain to the discussion, we shall henceforth omit the

explicit dependence on time in the arguments of the velocity,

the vorticity and the stream function.

7
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In the course of the analysis we shall use Green's functions

of the Laplace equation pertaining to the regions within and

outside the sphere. We adopt the following notation. The

symbols S and P will be employed to denote the surface of the

sphere and ocean, respectively. The region inside the sphere

is designated by VS. The water region between the surfaces S

and P is designated by VPS and the entire undersea region below

the ocean surface by Vp. Volume integrals are indicated by the

integration region VS, Vps or Vp and by the volume element by

dv. Surface integrals are indicated, similarly, by the region

of integration S or P and by the surface element ds. The sur-

i" face of the unit sphere is labeled Dl and the corresponding sur-

face element di.



The free space Green's function is designated by Go; i.e.,

Go(r r') = 1 (3)

The Dirichlet Green's function that vanishes on both the sur-

faces P and S is designated by GD. The Dirichlet Green's

functions that vanish on P or on S alone are designated by GDp

or G DS Similar designations, with N replacing D, are used for

the Neumann Green's function whose normal derivatives vanish on

the specified surface or surfaces.

The vertical displacement of the ocean surface plays a

very minor role in the internal wave motion in the ocean. Con-

sequently, the boundary condition at the ocean surface will be

taken as Vy = 0. Also, the buoy will be assumed rigid so that

the normal component of fluid velocity on the surface of the

sphere must be zero.

We first review briefly the formulation for the induced

magnetic field in the ocean in the absence of a buoy. The

geomagnetic field is assumed constant and is denoted by B As

shown in [1], the electric current J, induced by the motion of

sea water, is given by

p= a [-V' + (Bo " V)p (4)

and the electrostatic potential in the water is expressed by

= ' -B P (5)

The scalar potential function *' satisfies

V - 0. (6)

The stream function *p is obtained from the vorticity w, which

we regard as a prescribed source function. Since 2I
W =V xVX*p - VV. - V2*p, (7)

9



we may use the gauge condition

=0 (8)

to obtain

2p~ = _ - V IPP(9)

We solve (9) subject to the boundary condition on Op that ensures

Vy = 0 at the ocean surface and is, at the same time, compatible

with the gauge condition expressed by (8). The boundary con-

dition on the scalar potential ' in (6) is obtained from the

requirement that the normal component of electric current (4)

vanishes at the ocean-air interface. When the vorticity w has

no vertical component, *p is also purely horizontal and one

finds that

*=0 on P (10)ay

One then concludes that V*' 0 everywhere and the electric

current becomes

*p a(Bo • V7)p (11)

In this special case the boundary condition Op = 0 at P ensures

that Vy = 0 at P. The solution of (9) is then given by

±P J GDP T dv . (12)

One can show directly from (12) that the gauge condition (8) is

satisfied. This ensures that the vorticity w - VxVxVp with

as computed from (12) is Identical with that prescribed in

the integrand. The induced magnetic field BP is determined

with the aid of the vector potential Ap, which satisfies

7 A -_o JP) (13)

I
10



subject to the gauge condition

V • A =0. (14)

The solution of (13) is

P J dv (15)-P 0 GoJ-d

and the magnetic field is found from the formula

B VxAP (16)

We now consider the problem of finding the magnetic field

in the spherical enclosure. We have

B = V x A (17)

with

of f o Go dv, (18)

Vps

where the current J is to be determined from

J =aE-V' + (Bo " V)9]~. (19)

The scalar potential *' is no longer zero, since in addition to

the boundary condition (10), one must have

+  (Bo " V)* = 0. (20)3r r -o -

on the surface of the sphere. (Here 1r is the radial unit

vector). We again consider only a purely horizontal vorticity

function. Consequently, at the ocean surface

S0 at P. (21)

On the spherical surface we require ir " V - 0, or, equivalently,

r - 0 on S. (22)



II

We prescribe the vorticity function w in V and determine
i from

iV xV X* W , (23)

subject to boundary conditions (21) and (22). An exact solution
of this problem is rather difficult. We shall be interested

only in a small spherical enclosure in which case one may employ

the following approximate solution:

pJ GD dv. (24)
Vps

Equation (24) gives a stream function which vanishes not
only at the ocean surface but also on the surface of the sphere.
Although the latter condition is compatible with (22), the

divergence of p turns out not to be equal to zero. Consequently,

the vorticity as computed with the aid of (24) does not agree
with the vorticity originally prescribed in the problem. Instead,

one obtains

actal V x V xfVP G D w dv
factual mx j Gwd

VPS

- (VV.-V2)f GDT dv- w + VVj GD w dv. (25)

PS PS

As the radius of the sphere tends to zero, GD - GDP, so that
the last number in (25) must be 0(a). Consequently, for a

small* sphere, we have

Tactual •(6

*I.e., small in the sense that the velocity field (e.g., the
stream function) is constant over the sphere volume.

12



We shall be interested in computing the magnetic field and
I its spatial gradients inside the spherical buoy when the radius

a is small. In this case it is more convenient to deal with
the perturbed quantities B - Bp, A - Ap, - The first two

are related by

B - Bp = V x (A - Ap). (27)

Because of (15) and (18)

- AP = Uof (J-Jp)Godv- of JpGodv, (28)
Vps VS

where the observation point r of the Green's function is inside

the sphere, i.e., Ii = r < a.

13



III. PERTURBATION SOLUTION UNDER THE
ASSUMPTION OF A SMALL SPHERE RADIUS

The free space Green's function G given by (3) has the
0

power series expansion, when r < r',

Go(r'r') " . Pn(C°S y)p (29)

n=O

where Pn is the Legendre polynomial of order n and y is the

angle between the vectors r and r'. It follows that for the

first term on the right in (28)I. C

1O J J-) Go dv'= n rn, (30)

Vps n=0
where

~ 0 P (cos y) dv' . (31)

V PS

In (30) and (31) dv' has been written in place of dv to empha-

size that integration is with respect to primed variables asso-

ciated with G0 and that the result of the integration is still

a function of the unprimed variables. Since Po = 1 it should

be noted that mo = constant. It follows that
-00

fli x a
(J-Jp ) G0 dV'l (Vx a +nr x n)r n .  .(32)

0P8 
nal

In accounting for the second term on the right of (28) the

identity

J VIx(a J)dv' *fi2 q X JPa ds'

Vs (33)
S

15
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implies that

VxfJp Godv' =J V'x JpGodV' G x JpGods'. (34)

Then, using the power series expansion (29) for G when r < r'

and the expansion obtained by interchanging r and r' when r > r',
it follows that

G n=0 / j r

+ J rG 0 f V PPn (cos y)r' dr'd

n=O 2 0

()f r x Jp)rOa Pn(COsy)dg

n=0 Q00 n

= - a f r' x Jp()Pn(coS y)dQ+0(a2 ),(35)

where1 O(a
2 ) has been written in place of functions of the form

a2 n 0  Cn ( )n. In deriving (341) use has been made of the con-

tinuity of Jpto relate Jpon S to its value at the center of

the sphere, i.e.,

Jr , = J() + 0(a).

It follows from (27), (28), (32), and (35) that

ir ( - P) - (r " VXctn)mn

Go n0

a I:rn 2)2

T+ ) J r r' x JP(O)Pn(cosy)ddP + 0(a2) "

n0 a

16



= Vxcn )rn+ -'n_ J (0) ixiPn(cos y)dP
nka W~a- P Jr _r' n

nal nOP

+ 0 (a 2)

r= VXanlrn + 0 (a2). (36)
n=l

.4 The last relation follows from the fact that the integral in

the penultimate relation satisfies

f r x r' Pn(cos y)dg = 0. (37)

This can be seen from the fact that, if ir is taken to be the

polar axis relative to the primed coordinates in (37), i.e., by

rotating coordinates in the integrand, then

r x ir'= i,' is the azimuthal unit vector

and

Pn(cos y) = Pn (cos ). Since dQ = sinededo one

readily verifies that integration over a complete sphere yields

zero.

According to (36), on the spherical surface,

r Ir=a ir * YProa + E ( *r V x an) raan + O(a2)
n=l

= ba(e,O) + O(a2). (38)

Since inside the sphere
V x B -0,

there exists a scalar function 0 in terms of which

B - V 0 (39)

17



inside the sphere. Also

V • B V 2 4= o (40)

inside the sphere, and (38) and (39) imply that on the surface

of the sphere

30 = ba(0,e) + 0 (a ) (41)Frr=a a

To find the magnetic field within the spherical enclosure,

it is only necessary to solve Laplace's equation for 0 in V

subject to the boundary condition (41) on S. The solution for

small a does not vanish in the limit as a approaches zero, but

satisfies the Laplace equation boundary value problem with the

radial derivative of 0 equal to bo (e,), a quantity given by

b0 (6'0) = lim r * BPlr=a + E (i r " VXn)lr=aan]. ( 4 2)

L- n= 1

In calculating the magnetic field inside the sphere for

small a, it is appropriate to use a power series in r, or rather,

SAccordingly, the potential function 0 is

D = r 1 n-l Zn(0,e), (43)

n=l

where the Zn (0,) are the terms in the spherical harmonic ex-

pansion* of the boundary value:

The Z (0,e) denotes the sum d P(cose)e where d arenl mn mmu-nsuitable constants and Pm are associatedsutalecostnt ad n(cosO) ar soitdLegendre poly-

nomials.

18



-_ Zn(0,6) ba 4e) (44)
1r lr=a

n=1

The fact that the series in (43) and (44) are both missing
the term corresponding to n=0 is a consequence of Gauss' theorem

and the fact that the divergence of any magnetic field is zero.
That is, the integral over S of the magnetic field's normal com-

ponent vanishes, but the same integral provides the coefficient

of the zeroth order term in the normal component's spherical

harmonic expansion.

According to (43),

+ 1 Va (Z5)

n=l

In (45) the operator V is the angular part of the gradient

and is defined by

le Do sine a

19
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IV. EXPLICIT EVALUATION OF THE MAGNETIC FIELD TO THE ZEROTH
ORDER IN a

The coefficients in the power series (45) for the magnetic
field are obtained from terms in the spherical harmonic expan-

sion (44) of the function b (e,¢), given by
a

ba(¢,e) = ir B Pir=a +  (i V Xn )r=a . (46)

n=l

The first term on the riaht of (46) is Dresumably known, and

is, in fact, to the lowest order in a, the radial component of

the unperturbed magnetic field at the center of the sphere.

The remaining terms must be obtained from the vectors an defined

by (31).

According to (19) and (11), the current appearing in (31)

is given by

- -P =M + JE' (47)

where
M a (B " V) ( p

and

It will now be shown that the term JE contributes a term of

order a to the magnetic field inside the spherical enclosure.

It will be found later that the contribution of JM is of order

one in a.

21



Because of (27), (28) and (29) the contribution of J to

the magnetic field BE is

B = -"o' V xf Vo' G0 dv' = aOf VGoxVo'dv'
vs Ps

= oOf V'GoxVo'dv' =paf V'x(GoVO')dv'
Vps I ps

(48)

= aO n'xV$' '.
00
P+S

The function 01 in (48) is the solution of the boundary

value problem given by (6), (10), and (20) in which the normal

derivative of *' is given on S and P. It is shown in Appendix

A that the solution of a similar problem, in which the function

rather than its normal derivative is prescribed on S and P can

be obtained approximately by ignoring the boundary condition

on P. The approximate solution is correct to the lowest order

in the ratio a. A similar argument can be given for the case

in which the normal derivative is prescribed rather than the

function. Accordingly, it can be asserted that the boundary

value problem determined by (6) and (20) gives 0' correctly

except for terms of order .

Thus, 0' can be written in the form

€ - nl Z(,e)+0(a), (49)

n 0 (n+l)r n+ l2
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where the Zn (,e) are the terms in the spherical harmonic ex-
pansion of the boundary value on S:

-Ir=a i (Boo VlIr "

r ~r -V)

Then V0' has the form

n+ 2

r' ( n(0e)+ 0 , (50)
nd0

where

(0,B ) i V zn(o,e ).n (,) n -r n+l Q n

Neglecting terms of order ! in (50) is equivalent to drop-
D

ping the integral over P in (48). Then

BE ~ IoJ* r, x v$'Gods'. (51)

S

From (50), (51), and the power series expansion (29) of G
0

for an observation point inside the sphere it follows that

ia P(Cos Y) i1x~('0)~ (52)
PE oaTi (M-3'x jm ,n o Oyf

Since in (52) r < a, it follows that B E is at least 0(a), as

was to be demonstrated. Consequently, except for quantities

that contribute terms of order a to the magnetic field

J~ - Jp ~ , (Bo " v)(*-*p). (53)

We must now examine the representation of the stream func-

tions * and *p. Since GD 0 DP + GD - GDP, Eq. (24) may be

written as follows:

S-f GDp w dv +4 AGwdv, (54)

.P PS
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where AG is the difference between the Dirichlet Green's func-

tion for the region with boundaries P and S and the Dirichlet

Green's function GDP for the region with the boundary P alone.

Similarly, we write the integral (12) as a sum of two parts:

p Gpdv GDPwdv GDpwdv. (55)

Subtracting this from (54) we have

I_- *p.f AGw dv -fGDpwdv. (56)

VPS S

It is convenient to express the various Green's functions

in terms of a radius vector

- Xl-x +y y+-z
r(x,y,z) - xi. + yi +zi

and its image r in P,

r= r (x,2D-y,z).

Clearly, on P

A A

rlp = r(x,D,z) = r(x,D,z)= rip (57)

Thus,

GDP= G (r,r,)-G o(,rl), (58)

since (57) implies that GDp defined by (58) vanishes on P, both

terms on the right of (58) satisfy Laplace's equation, and GDP

has the same singularity as GO when r approaches r' in V.

Making use of the expansion (29), one can obtain an esti-

mate of the second term on the right side of (56) by observing

that
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~nn C'o'
/Dpndv'= r'Pn(cos )dv' 1  Pn(cos

S n=0 Vs
a 2  Iran+l z

=n-7[(I1) Jf oPn(cos y)d(l ,
rim0

Pn(c s P)dn + 0(a3) (59)

a (a) + 0 3

where wo is the value of w at the center of the sphere and where

y is the angle between r and r' and ? is the angle between r and

r'. Because of (59), the second term on the right side of (56)

will be carried, simply, as a term of order a2 in comparison

with the first term whose order will also be obtained.

It is shown in Appendix A that, to the lowest order in

I _a a]AG +  (60)
77 4 2 2 a 2A ". t2

/a -2a rr'cosy+rfr a -2a rr'cos9+r r

Since

and in Vps

r' 2 a,

AG can be expanded in the power series

a] 2 nI e1 .(_.P(COS (L
G a rr- Pn(S Y1 r (Cos

4 -- ,) (61)
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Hence,

SAGdv' Pn(OS +Pn(C°S Y)dv

VPs PS PS

a dv' + O(a 2)
r F1

Hence, to the lowest order in a,

a (62)

where P is the constant vector given by

= -dv'. (63)
PS

According to (53) and (62)

j - cy a(or (64)

0r r (64

where, as usual, the vectors i and i^ are unit vectors in the
-r -r

directions indicated by their subscripts. Substituting (64) in

(31) yields

,a Boi0,af ( -, dv B .0.(5)

(n -- r,n+3 - 72 +l Pn(co s ydv' (6
Vp
VPSrr

Since terms of order - are to be neglected, the integration
i region Vps can be replaced by the region between S and a sphere

with the same center and radius D. Then the term involving re

can be neglected as well. The result will be

aiUz ajf D -~~'Pn(cos y)dr'dnhi,
n ~ #26
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which, after neglecting terms of order 2 becomes for* n i 0

a f BoirPn(Cos y)dn V (66)an  n4wa n I  ~f66

The integral on the right side of (66) can be simplified

by rotating coordinates, if necessary, so that the polar axis

of the coordinate system corresponding to the integration vari-

ables has the direction i r Then the angle y becomes e,. If

we express the geomagnetic field in the form B = ir Bor +

oo r orrBo - Bor[COS 8 e-sin 8 i€,the quantity o ~'myb

written as follows:

B i = .Bo2-B sin e, cos (V'+8)+BorCOs O.
-0 rr o

Thus, (66) becomes
S2v

n n-i Bo/--Bo r sin 0, cos(0,+0)

-n4wa 4f jfoo

+B cos e)Pn(COS e')sin e'de'd*'
all B ~ +or e nco

= oBr P Pn (cos e') sin 0' cos 0' de'

n2a
n - 1

ao 0 Bor ,.10 ~Bor P

S1 X Pn(x)dx o o r ;n - i,
n2a n -  1 3

-i0 ; n + 1,
i.e.,

ai - - (1 r o) (67)

a n 0, n+l.

~oL does not enter into the calculation of the magnetic field.

See (32)
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Then, according to (67),

Vx 0~ xi (68)

But

VCo@r)- o (69)

1(B -B i)
r -0 or-r

From (68) and (69) it follows that

ir V . l 1 r xo (70

i * V x a n 0, n +1.

Thus, for the boundary condition determined by (38), it

follows ffrom (70) and (41) that, to the lowest order in a,

a(10 rmra ir B..I + - r 0

[B (0 i- xB (71

-r EB(O 3 -o0

where B,(0) is the unperturbed magnetic field at the center of

the sphere. According to (71) the normal component of B on S.

to the lowest order in a, is equal to the normal component

8r of a constant vector 0 defined by

B B(0) + au B0 x Ij
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The vector B whose divergence and curl vanishes in S and
whose normal component on S is i " B is the constant B, itself.

-r -
This can be verified algebraically by expanding ba( ,e), given
by (71), in a spherical harmonic series and substituting into
(45). In this case the series consists of a single term
z1 ( ,e), the result of calculating the radial component of a

constant vector. Thus, to the lowest order in a, we have the
final result

- B (O) + B .o x, (72)

where

Sdv' 1 dv'

Equation (72) states that the magnetic field inside a
spherical buoy of small radius is spatially invariant and is
given by the sum of the unperturbed field (as computed at the
origin of the coordinate system of the sphere) and a correction
term which is proportional to a volume integral comprising the
vorticity function. The fact that the field inside the spherical
cavity is spatially invariant is analogous to the situation that
arises when a dielectric sphere is placed in an electrostatic
field: there the field inside the sphere is also a constant.
Indeed, the presence of the factor 1/3 in the correction term
is reminiscent of the depolarization factor for the electro-
static field measured in a hollow spherical cavity in an ex-
tended dielectric medium. Thus, when n is the (relative)
medium dielectric constant, the electrostatic field within a

spherical cavity is

E + 1 tK E

where E is the incident (unperturbed) electrostatic field.
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We now relate Equation (72) to the parameters of the in-

ternal wave field. We denote the cartesian coordinates with

origin at the ocean surface by E,n,C where n r 0 is occupied

by sea water. These coordinate axes are chosen parallel to the

x,y,z coordinate employed in the preceding discussion (see Fig.

2). We denote the instantaneous vertical displacement due to

internal wave motion by q(E,n,C,t). The horizontal coordinate

pair (E,) will also be denoted by the vector K,

+ .

j We now introduce the two-dimensional Fourier transform represen-

*tation of q:

Sq(K,n~t) =L e-i' q(K,n,t)d2K, (73)

where
(K~~~~~ni t) n LE t  A_(K) -iQnt

, e n in e  • (74)
n

The n(f) are internal wave mode eigenfunctions satisfying

d2 2 (n) + (- )n() = 0. (75)

dn n

with the normalization

f.0 n(n )  m(n )N
2(n)drn - nm " (76)

A typical number of the sum in (74) can be interpreted as a

simple harmonic internal wave with angular frequency n travel-

ing in direction K/K, as indicated by the angle w in Fig. 2.

Each component internal wave induces a corresponding partial

magnetic field waveform which we denote by A(n)(K,r,t. The
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actual field is then given by the superposition

B(n,n,t) =[ -K. -() Kn~~ dK (77)

In the following, we shall be dealing explicitly only with a

typical member Bn, and use the notation-' n for the unper-
turbed field in the ocean. From [1], p. 54, one has

(n) (n) + , B(n) (78a)~ =PH - P(7

(n) = n)[ in (B U n(Kt)' (78b)

(n) a nKB U(K,t),(7c

BPn= L\o + i 2 no (78c)

where
i t -i t

UnMt) - A+ (K) e n + A- (K) e n (78d)

L+ = e-Kinr)eKn n(n')dn' + eKn 0 e-Kn

n ~ _ef(ef * n)r' nlO ~l (n')drn', (78 e)
n n

L e- K nf eKn'n(in')dn' - eKn  0 e- K ni *n(n')dn '  (78f)

The subscript H in (78a) and (78b) is used to denote the fact

that this vector is purely horizontal. These expressions give

the unperturbed magnetic field below the ocean surface. We

now obtain the perturbation due to the spherical enclosure, as

given by the second term on the right of (72). We first com-

pute v. When the location of the center of the sphere is ex-

pressed in terms of -, (n - -D < 0) the integral may be

written as follows:
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- 1 dy 1 1  kXE'Yn- dxdz

1 j* dytf W(E'n,' dE'd '

Using the identity

1f f 1 fIdK e -K niI -iK(,c-i
~ ~~2 (~~)2+ ~~)2( 2 r) -Joj

we obtain

where

= 2)-2 f~ eKn'KldKI (80)

From E1] one finds

(n.)= i(i~ xK) 2( ) nI)U (K~t)
nn

n

With the aid off (81), (79) may be written as follows:

n
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where

w h e r e i XK e _ K f l n I N ( n ) n( ) d n .
n2K -O nn
-nSin

From the differential equation (75) it may be shown that

1 (n)dn" n. )
- n eK n (82)

2nnK 2K2

* Thus, the correction term that must be added to (78) to account

for the effect of the enclosure is given by

3 o -

0 ~ ~ ~ - -n n OeK

SUn (Kt) " . n- (i," n o) ln - 2K2  (83)

3 n- in 710 2K /
Comparing this expression with (78) we observe that,

generally, the "correction" term is of the same order of magni-

tude as the unperturbed field.
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V. THE MAGNETIC FIELD TO THE FIRST ORDER IN a

Since in the zeroth order approximation the magnetic field

*in the spherical buoy is constant, the (spatial) gradient of

the magnetic field is zero in this approximation. To obtain a

numerical estimate of the gradient, the magnetic field must be

computed to the first order in a.

The magnetic field is determined by the currents 4 and JE

as indicated in (47). It is shown in Appendix B that the com-

bination of ! is 0(a2). Consequently, to find the field to

within 0(a) we need consider only JM The magnetic field is

determined by the a n defined by (31), since it has already been
-n 2

shown that the integral over VS contributes a term of order a

According to (53), (56), and (61) the current that determines

the a n depends upon vectors H n defined by

H n m Pn(cos y)dv'. (84)
Spr

The vectors H can be written in the form~n

Un f Pn(cos Y) Pn ( ',e')dn, (85)

where
D sec e

Fn( ),n- dr'. (86)
a
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It is clear from (86) that for n = 0 or 1 F is 0(1) in a, but

-n
for n = 2 F is 0(log a). For larger values of n, i.e., n > 2,

F is 0 (a2 -n ) .
-n

Each cartesian component of F n can be expanded in a sur-

face spherical harmonic series. The results leads to a vector

expansion

Go
Fn ( 'e ) = z] n(,) (87)

m=O

where Z mn is a vector each of whose cartesian components is a

spherical harmonic of degree m. It follows from (85) and well

known properties of surface spherical harmonics (cf. MacRobert,

Ch. VII) that

_47 Znn(,e 47 Z n(Oe ), (88)n 2n+1 -n 2n+1 -n '

where Z n has been written in place of Z .

From (56) and (62), neglecting terms of order a2 and of

order A, it follows that

00 n (T + 1

p - (a- n(0 'e). (89)

n=0

From (53) it follows that

a2n+l1jp aG r 2 n+ (,e), (90)
n=0

where

(,e) (n+l)(il )z n(0,e)-(Bo. V )zn(,e)], (91)

is a vector each of whose cartesian components is a surface

spherical harmonic of degree n+l. This last statement follows

from the fact that each component of each term in the series

(89) for *- p separately satisfies Laplace's equation and

still does so after the operator (Bo V) is applied.
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According to (31), then,

a0  2m+l Zml P (cos y)dv'
.n a ] m+n+3 n

al :a2m+1 Y) sec e
- a- m~l(Ofe1)Pn(cos Y) dr' d6Q
M= o a r ,m+ni+l

W amnl f yM+141 $,61)P n(cos y)dn

m=oQ

a0  y n(O,6), (92)

wherein terms of order at have been dropped and the same prop-

erties of spherical harmonics used in deriving (88) have been
applied. It should be noted that for n - 1 or 2 Yn is 0(l) in
afor n = 3 Y is 0 (log a), and for n > 3 Y ±snO~ 3-n).

-n -n

According to (88)

z(Oe) 3 ~.H19 (93)

and therefore, according to (84)

z(Ole)=CO dv cos y dv'.(

Thus,

-1 (Ole) V13 Cos e + (l Cos 0 + P2 sn* i ,(5
where

113 f ~ cos el dv', (96)
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~ cos 0' sin e' dv' (97)

V Pr'P

and

*2 =3 r'2 sin *' sin e' dv'. (98)

P

Then

= -(±r" Bo)cos e + (ie "Po)sin e3..

+[2 ('r •Bo) cos * sin e - (e - B%)cos 0 cos e

+ (I B 0o)sin OJ *i + [2(" Po)sin * sin e

- e Po) sin 0 cos e - (iBo')cos J t2-

(99)

According to (38), if the boundary term ba(le) is supple-

mented by a quantity A8 given by

Ci = ( r V x a 2)r=a a, (100)

because of (92) and the order in a of Y for n > 2, the terms-n

neglected in ba (,e) will be 0 (a3 log a) and higher. In order
to obtain the complete field correct to terms of order a, how-

ever, it is also necessary to replace the quantity Bp(0) used

in (71) and (72) by Bpir-a correct to the first order in a.

Thus, the new boundary value ba (Oe) is given by
0+au o  

p I auo

(Oe)r' B (0 7-- . o + a r + -5- a2 r VXY2 (Ole)ir-a

a .rPo -r. 3r rmr -2 rm

(101)

+0 (a3 log a),
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wherein the fourth term on the right side of the equation re-

sults from (92) and (100).

The fourth term on the right side of (101) is actually 0(a)
2rather than 0(a ) because of the curl operation. The expres-

sion

r x V [r Y (0 e)]= r~i * 2  e) (102)

is a homogeneous polynomial of degree two in the cartesian

variables x, y, and z because the cartesian components of

Y2 (0,e) are all surface spherical harmonics of degree two. It

then follows (cf. Ref. 3, P. 14o) that the fourth term on the

right side of (101) can be expressed as the sum of a surface

spherical harmonic of degree two and a surface spherical har-

monic of degree zero, i.e., a constant. That constant is the

integral over the unit sphere of the original term, for which

according to Gauss' theorem

i r.V x Y2 dQ =f V (V x -2)dv = 0. (103)

Hence the original term is a surface spherical harmonic of

degree two.

The third term on the right side of (101) can be written

-rr r r-O r * Pr=O

a [( *' ax a( r )( P lrO

l a(ir" -Ir= 0)(ir !x ) k(r lyr) )

+ (r " l-rl ,Ir -z

l a [B2 (0,e) + 1 • Bp - a B2 (f,e), (104)

3 2
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where B2( ,6) can be recognized as a surface spherical harmonic
of degree two because of the identity (B-4). Here, of course,

B2 (0,6) is given by

B2 (Oe) = - r=0 (105)

These considerations make it possible to write an expres-
sion, correct to terms of order a3 log a, for 0, the function
that satisfies Laplace's equation subject to the condition
that on S its radial derivative is equal to the function b a(,e)
given by (101). Since the magnetic field inside the sphere

is VO, it is then given approximately there by

B Bp(0) + - B B x P + 15 r r +  2 7 r V x Y 2(,e
rma

+ r + 1 V B2 (0,e) ,  (106)

correct to terms of order a.

Because of (104) it follows that

x 1  r) + z( . r) + y(3 " r)
B2 (Oe) = 3 ~ (107)

r2

where

= L z a0 _3-5Hu (108)X r=01Bp,. Bp

Then, according to (106), the contribution of B2 (Oe) to B can

be written

1 2  3)
r(I+ 1 v)B 2.or opr(r n (10 c (10

The vector operator in (109) can be written(o

(~ +~.v~ - r V + i r



- r v+ ': 2- r.V r
2 2

[2 r + i (1 r V* Vir (110)

It is now useful to observe that relations such as
(_•__( "

_) Xl + X(1l'r) r (111)
V r ] r r r3

and thus, also,

r )V r X(Sr (112)

hold.

Relations similar to (111) and (112) can be used to evalu-

ate (110). Thus, it follows that

+ Vn) B2( 6) + (Ix.r) ].

+ i + @'* 2

+ yr + I " 3 ' (113)

where I is the unit dyadic defined by

" - + Iy + Iz±z" (114)

It follows from (91) and (95) that, except for an addi-

tive constant,

Y2 Ul(,e)hI + U2(O,e)U 2 + U3 (0,e)u 3, (115)
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where

u4(,e) x(B0 r) 4 z( B o r) (116)1 r 2 u2(e r r2(i)

U3O'e) 4 5 r (117)

From (115) it follows that

i r V x y2 =-r (r x V UI  + r x V U2 . l2 + r x V U3 " 13).
(118)

From (116) it will be found that

5 r 2 x x +  r2B "

Similar relations hold, of course, for r x VU2 and r x VU3 .

It then follows that

r . vxY 2  r r V x Y2 . (120)

r=a

From (110), (119), and (120) it follows that

(It + g. va)( "t VXX2) =a= [v+ r2 .r *2 x

+xrXBo] o" Xz+zr2o

yrr

r r N ]

vxy2V+--L- -1 r J rx

a -r + 2
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0 y r x }O (121)

{~~ X1+ X 2 +y r ~~

2x. x . u'o] + j
-a ! -x X -U '-z X V-2 + x- -3) xo (o -Z x z-2 -Y -3)

+ [( ox )ix+ ox P-)+ x Bx 2)l+ z(Pox U 2)

+ r•Bx3 yy ox
X P 3)i Y( 0 XU3)]

5a { (rxix)+ ix(rxBo)+ (jx - x B 0)~ + ~

+ (r x Iz) + iz( x B) +( . x B)+ - E) 2] *12

(121)

+ [) +, (r x B)+(I x B)+

where (121a)

a" -z-y -yz, Z2 " y-- Y -x-y ' Z3" - x"

Expressions (113) and (121) can be substituted into (106)

to obtain an explicit expression for the magnetic field. Then,

with

go- BP(O),

the magnetic field can be written:

.r ZI~ (OX
[- [+ "0 (pox J~) + l{[xr +l x
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Ix • , x + xIx

+ + (B. B) -7-5. i) + ( x 0

x+ x,) i,

+ (B * ) ] * 3 } (122)

The foregoing analysis shows that terms neglected in the

approximations for the magnetic field and its gradient are of

the same order as an multiplied by the quantities H given byn
(84). That is, the terms neglected are of the order of a times

higher derivatives of the quantity

) PS G° wdv'.

As indicated in (79), the convolution theorem implies that the

horizontal Fourier transform U of U has the form

-w ( n ',K) -i K . K - KIn-n 'Idn
U~(K) - e -~ ~ LA- 2K

It follows that an nth order derivative of p has a Fourier

transform that is proportional to KnU(K). Thus, a condition

that might be imposed, Justifying the magnetic field approxi-

mation used in this paper, can be stated as follows: the

vorticity spectrum is negligible except for the wave number

region in which Ka << 1. Because of the monotonic relation

between frequency and wave number, this condition is consistent

with the static approximation used in calculating the magnetic

field.
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VI. THE MAGNETIC FIELD GRADIENT

The magnetic field gradient Gpq relative to unit vectors
and is defined by

G pG 1 V (q (123)pq qp _.p .q

* If (123) is applied to (122) the result is

* Gp q 2 A 1 • -2 -2 - 3 • 3

+ 2au1 ( + " 2 + ~ 3))

(124)

where

2 - (q x p + (p *z q

=2 ('q *z ) , + (p iZ

=3 q i1 p + p * y q9

ri =(i •Bo) l x + i• x)jp x Bo +(" x- xB +/I" B
(!q * N p p x _o +(qp - ~x)qo -p qX'x,

r2 ( q p x 'z +q •)jp x Bo + (p - -) xo+(p qXi z,

E3- (q -o)ip x iy +(!q _y)* p x Bo +( p. iy) qxBo+(i p . qxiy.

Part of the expression (124) for the magnetic field gradi-

ent depends upon the vectors 81 which are related to the gradi-
ent GP  of the magnetic field in the absence of the sphere. It
is useful to obtain P both for the sake of comparlson and foris uefu toobtin pq

the purpose of evaluating (124) in more detail.
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As in Section IV, quantities in K (transform) space will be

labeled with a caret. Thus, the vectors 0 are defined as

Fourier components of derivatives of the magnetic field even

though the B. are defined only at the center of the sphere.

Employing (78) and changing the coordinates from , n,

to x, y, z we have

K
_. AB = B (125)

Then, from (125) and the fact that

V.B=0

it follows that

A -iJ i aB,
Bpx =y

and (126)

^ -i Kz pXB Pz 9 y "
K

Now, let
K A

. i Bpy y. (127)

K

Then

1= Kx Kz a 8, ~ 83 = i . (128)

From (78c) it can be seen that

all 0  f0L. K .B +B a1 -Kly-y'I A(YWT1A dy
Bpy = - - -0 oyBy n n

96 ( 1 2 9 )
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It follows from (127), (128), and (129) that

I- Ip • V(lq • B) - PL 0 (Tl+iT2 - + T3 -- +iT4 y-Y dy

(130)

where

T( B-lqy (K )p (K1 B )

1K (B))+ - )(1 K1)
2  -1-py 1qy (K o K2  1 qy(K -ip )Boy,

* [ r ]
T3 = Bqy oy -2 [lpy( 1 )(K B) + (K •1 )(K • )B

y1 B (K •q)

K2

The derivative operations in (130) can be carried out with

the aid of the following identities:

Se -KIy -y'I = K[Y(y'-y) - n(y-y')] eKIyy'I

e - Ky-y'j = -2K6(y-y') + K2 e- K ly- y ' l (131)

ay

e - Kjy-y'l -2K6 (y-y') - K3e -KIy-y'I

a• [n(y-y') - n(Y'-Y)],

where n(x) is the function defined by

0(x) = ,y< 0

1, y> 0



and 6(x) is the Dirac delta function. With the aid of (131)

equation (130) can be written

p " K~- I ° iKT [ K2T 0 + iK3Th -1 eKlY -tI

a? - O [ 1 fO 3k ,+v '

x 2:0(y') Undy'

n

-2KT 3 n n(Y)Un - 2iKT 4 J*n(Y)Un

n n

0 j + K2T) + i(KT 2 
+ K3T 4 )  e-Ky-Y'I

x 1 On(Y')UndY'

n (132)

-2KT 3  O n(Y)Un -2iKT 4  n(Y)Un

n n

For the magnetic field gradient inside the sphere (122)

can be used. The result will depend upon the moment vectors ui

given by (97).

Using the coordinate system with the origin at the water

surface rather than at the center of the sphere then (97) can

be written

0 dx'dzdy

0 00'dx'z'dy'd dyd

x 2+z '2+(y'-y) 33 /2
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~c z(d+y,_y) di (133)

where it is assumed that the center of the sphere 
is at the

point with horizontal coordinates x = 
0, z = 0, and the vertical

coordinate y arbitrary. By considering the two dimensional

Fourier transform with respect to x and z 
it can be shown that

1T = e- yy)- +( y' y'ddK,

- 31 J J fo -Kiy'-2-2- T..,J_,Y.#..e (K,y' )dy'd2K,

000-Kly,-yl
--2v=-j=e [-n(y'-y) + n(y-y')] (K,y')dy'd:(oK~-T

( e (o e-Kel-yl (K,y,)dy'd2 K. (134)

2 a . , -K

From (124), (127), (128), (129), (134), and (81) it is found

that

A 0 a 2 a3  -Kly'-yjpq 2-K 1 +L2 ay 3 -2 L4  - e
I ay n

(1357)

+ [+M -L] e1(ly'-Yl N 2 (y).ni Untdy?
n n

where

, 2 (K B B0 )(Kx A ly +Kz A2 y) ,
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L2 Kx(AI K)+Kz(A2 ")](K Bo

+(K . 0o)Az3Y ] '

L3- 2K (A3 K)(Bo" K)+EKX(AI" K)+Kz(A 2 " K)]Boy 2' A3yBo

ioa o

L4  -2 (A3  K)Boy
2K

01Lo

M = 0 [+(z lx x lz)Kx+(Kzr2x-Kxr2z)Kz ],

oi- .- K r +K r ).(136)
2 25K z 3x x 3z

The p,q dependence of G is determined by the p,q dependence

of the Ai and ri, which are defined in connection with (124).

Thus, the Li and the Mi depend upon p and q, although, to save

space, these indices are not exhibited explicitly here. With

the aid of (131) G can also be written
pq

Gpq 1 (L1 + K2L3)e-KIY '-yI" ¢n(y,)UndY,

n

KI 2 UndY '

- n n

fo4fy ! (L2 + K2L )e-KY-YI *n(Y')UndY,

n

2 - l 'Y N (YI) n ( y ' )U n d Y l

2n 2
Sin

-L 3 E On(Y)Un-L 4 J:n(y)U (137)

n n
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VII. SPECTRA OF MAGNETIC FIELD GRADIENTS

AA

In order to obtain correlation functions <Gpq G rs>, which
are used to determine the spectral characteristics of the mag-

netic field gradient, it is convenient to write (135) in the

form

Gpq =  [Apq(Y')E n(Y')Un+Bpq(ysy')EB n(Y') Un]dY' ,

-0 n n 92f (138)

where

A y1y') -L + L a + L (1e3- K 9-Y

pqyyl 13 3 72 4 3Y3~ y

and

B (y,y') [Ml+M2pq y eKIy'YIN2(y').

In (139) the quantities Li and Mi depend upon the indices p,q.

With the aid of identities derived in Appendix E of Ref.

1, it can be seen that the correlation averages of magnetic

field gradient components displaced in time are given by

<%t)Gat,)> Aqyy)Ags(y,y")] 1: n(Y')¢n(Y")Vn

rsff [Aqyy rsp-0 -CO n

+[A ypy)B*(y,y")+A* (y.,y")B (y ,y')n
pq r sp n S1 n

pq r
+ (Y' )B~s(-nY") --nYnY) vn dy'dy",

n n
n (140)
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where ~ 4(~ K-

n 2 nn-

and

=t -t

If the Milder hypothesis [1] is used in (140), this becomes

0

<~ () C'> A(yyt)A*C(y'yf) 9 (K)W (K,T) (y') (y")dy'dy
< qtast pq rsn nn n

n

+fj A YY )B* Cy)y")+A*s (y~y")BpqY

n

+f Of )B~sy,yI)ZWCK, )On(Yt)On(Y ")dyidyll

n (1141)

where

W n (K, ') - I j(K)e sn() + I(-.K)e Qn WKT] (l12)

Now, define

n

A (Y,y') i:A*8 (YY") Y~ (y'.,y")dy", (1143)

and

B (y, y?) f B* (y ,y") Y(y',y )dy.
rs ra
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Thn L a ccordin to(1 )

8o rsr

(G t~a (t"> A (yB 'A~ (y,y') + B ( 2 yy)l (144
pq r jpq I'ssJ

With the aid or (1143), (131), and (139) it will be found that

A (Y') = r + KL3  )J eKIY Yv (y Sy")dy" (45

rs 2K __(145)

+KL*4rs) .ffeIII (Y y)dyI

+rs )-2~ y (y.'y

-L ryv Cy',y - Ltrs vyy.Y

and

B~( y) N (Yi'f N(I)eKIY Y (y y )dy

+ 2rs N2 (Y )eKjy"yIy (y',y")dy".
+ 2 J.a -L V

In (145) the subscript y on the last term or the expression ror

A (Y,Y') indicates, as usual, dirrerentiation with respect to

to the second argument. By similar means the relation (144)
can be written

<G (1) (Li.)a e±sf e Y'-Y1 [ Ar (y,y')+pq i's

B(2 y,,y' dy'

2KQ feK ly'YIN 2 (Y)A () (Yy)+B () (Y"Yw Y
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K 2L 0 EOY KI '-y y,

+(LP + -I~ 4 2] eIY'-YI[A$ )r Yt
rs

- Ms eIY'YN(y' )[Ars(Y'Y')+Brs

(4)yy (2) (Yy yl q AC() (y y)+B(2 ) (y y

3pq rs rs'' pq[ rsy' sy rsy'

(146)

Again, the subscript y' in the last term of (146) indicates

differentiation with respect to the second argument.

By comparing (130) with (135) and using (145) and (146) an
expression like (146) can be found for <6P (t) G (t')>. The

result is, in fact, (145) and (146) with M and M set equal to

zero, the quantities L1 and L3 replaced by ap oT and ai 0T3,

and the quantities L2 and L4 replaced by iaoT2 and iaUoT 4 . In

this replacement the complex conjugates in (145), indicated by

asterisks, are obviously obtained by simply changing sign, since

the Ti are all real.

Since the statistical process is assumed to be stationary

<pt rs (t')> is actually a function of T = t'-t in its time
dependence. If <G C(t)G(t')> is integrated over the two dimen-

epq rpq tnrs

sional K space and the temporal Fourier transform, with respect

to T, is taken, the result is the temporal spectral function

0 qr (w~y).Cpq ;rs(,)

If this process is applied to (146) in two steps then the

first step, integrating over K space, leads to a sum of terms

IV (T,y) of the form

I V(Ty) [ y? fyl,, H (K, y, y', y")y (Y ,Y") (147)
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The second step, taking the Fourier transform with respect to

T, proceeds as in Appendix E of Ref. 1.

The integration over K space is done in polar coordinates

after the temporal Fourier transform is taken. That is, the

integral is taken over the magnitude K and the direction angle

w of K. The integral over K is carried out explicitly and the
angular integral is over the interval (0, 1) after the change

of variable

w = a+B-

from w to 0.

When this procedure is applied to (147) and the derivation

of equation (259) in Ref. 1 is imitated, an expression for the

magnetic field gradient spectrum analogous to (259) in Ref. 1

will result. In carrying out the necessary steps the large

tow speed approximation introduced in Ref. 1 is essential.

First, it is useful to consider the integrals J (w,K,y),

defined by

J (w,K,y) = f HV(K,y,y',y") Vn(y,)¢n(y")dytdy,,,  (148)

n

in more detail.

It is clear from (146) that the possible values of v in

(148) are 0, 2 and 4. Identities (F-9), (F-5), and (F-6) of

Appendix F in Ref. 1 can be used to evaluate the series

S(,y") n nn (*y')¢n(y " ) (149)

n

for these values of v.

For the case v - 0 the expression is simplified somewhat

because

So(Y',") O Cn(Y')On(y") -a('-Y")

0  n N 2(y')
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Thus,

i (w,K,v) (0 1 KYy~ld (150)
N (y'

For the other values of v the calculation is more compli-

cated; (1148) becomes for v =2,14:

'7\ (w,K,y) Hj H(K,Y,y'y")SV (y',y")dy'dy", (151)

where, according to (F-5), (F-6), and (F-8) off Ref. 1,

2S 2(y"y) = K g(y',") 12

and

S 4(Y',y") = JN 2 (x)g~x,yt)g(yw,x)dx,

for g(u,v) defined by

g(u,v) = e usinh Ku > (153)K

Inspection of (1143) and (1144) shows that

H (K,y,y',y') = B (y,y')B* (y,yW),0- pq rs (1514)

H2(Kyy," =pq rs pq rs

H (K,,y,y',y") - A (y,y')A* (y'y").K

According to (131) and (139'),

A(y,y') - (L,+KL) + K(L2+K2L14)[n(y'-y)-n(y-y' )J e-Kly-y'I

_L36(y--yt) -L4 tat(y-y') (155)

and

12
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where subscripts p, q and r, s are not shown but are understood
to be determined by the constants L i and Mi -

It follows from (150), (151), and the derivation given for

the relation (259) of Ref. 1 that the temporal spectrum of the

magnetic field gradient is given by

(pq;rs( 1y) = Jpq;rs(a+8- ,K)[l(K,a+8- )+l(K,a+$)I (156)

+dS
+ Jpqr(c-8-w,K)[I(K,cg-8-w)+I(K,ct-8)] dB,

where

J(w,K) = Jo(w,K) + J2 (w,K) + J4(w,K). (157)

The magnetic field gradient temporal spectrum in the absence

of the bubble can be obtained from (156) by setting the Mi

equal to zero and replacing L1 by auo Tl , L2 by ioioT 2 , L3 by

S0T 3, and L4 by iaooT 4 in (155). The result is

0 P (WY) -= 1 7 ±I q; ( +$ ,K y) (  (158)pq;rs Wj K(pqr

+ pq;rs (a-07.K~y)

where

rp OfOA qPy,y)r(,Y")s (yy")dy'dy"
pq;r 4. q( s

and where

AP(yy') al 0{ T + K2 T3 + iK(T 2 +K2T4 )[(yt-y)-(y-y) e- K ly- y'I

-01 T3 (y-y') + iT4 6'(Y-Yt)"
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Each Of the terms in (156) can be reduced, so that the
magnetic field gradient 0 pqr(wsy) can be expressed as an

integral over a of a quantity that involves just one more

quadrature. For this purpose it is convenient to define func-
tions f V (Ksy) by means of this quadrature:

f (K~y) x1 xeKXN (x)dx.(19
y

The first term in (157) is the quantity aJ (w,K,y) given by

(150). The relations (154) and (155) are needed in evaluating

that term, as well as the others. It is found that

.L 0 N2 y'H 0 (Kgy,y',y')dy' - C0olJ N 2 (yt)eJ2KIy-y'Idyt

+ C o2 (Jf 2 (yt)e 2KIy-ytIdyl

-(C ol+C o2 )e 2Ky [0 e 2Ky? N 2 (y)dyl

y (A-2)

+(C C 2 )e 2 K y e2Ky'N2 (yI)dyl

=(C 01+Co2 )e 2Kyf0 (-2K~y)+(C 01 C o2 )e- 2K~ 2,-)f0(Ky

(160)

where

C M + M pM*r (161)

and

o2 1~ lpqM2rs+M2pqMirs)
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For evaluating the second term in (157) it is convenient

to define a f.iction F(y',y) by

F(y',y) S2(y',y") A(y,y")dy". (162)

The quantities appearing in (162) are given by (152), (153),

and (155).

Then, because of (154), it is found that

_0(KYYY")S2(Y' ,y")dy'dy" =/j [Bpq(Y,y');s(y',y)+B (y,y')Fpq(y',y)]dy'.

(163)

The symmetry of the function S2 (y',y") is used in deriving (162).

Further evaluation of the second term in (157) proceeds

from (162) by means of the equation

fB(y,y')F(y,y)dy' 1 ~ (. , M2)eKyYeKYN2(y)F(y,y)dyW

+ 0- )e e-KY'N2 (y')F(y',y)dy' . (164)

y

The subscripts p, q, r, s and the complex conjugates in (163)

can be added to the general relation (164) by using the appro-

priate subscripts and complex conjugates for the quantities LI,

L2 , L3, L4, M1 , and M2, which are all independent of the inte-

gration variables in (162) and (163).

The evaluation is continued by proceeding from (162).

Thus, using notation the meaning of which should be obvious,

(yI<y) - -K[-(L 3 sinh Ky + L4 cosh y)eKY+(C 2 1 C2 2 )e7K sifhKyf eY"Idy"

+(. 2 1 -C22 )eK(Y ' - Y)JIV YeKY"sinh Ky" dy"
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+(C21+C2 )eKC'~~ e7'in y"dy

=Ky'+ 1 -eKye2Ky' n y

-K (L sinh Ky + KLcosh Ky)e+ - (CCCe e sn y3 4 2K 21-22

+ 1 (C0) 1 2Ky Ky') + l-K(v'-Y) + 1 C K(y+y')
2 2122 2K Ce 1 21 22 'yj'~

x [-y + 1. Ci-e72K
2K

whr=FoCY)e' + F, (Yy y'~ C(165)

IF (y) =C( - )sinh Ky + KE4 cosh Ky + ( )c2 e 2 y~K

1~-Ky

2 ~ ~ 21-022jy (166)

F1Cy) = C -C)-K

1 1 22

021= l + K (167)21 2K3

and

C 2 2  .21 (L2 + K Y

Similarly,

F~y' > Y) --K' -(L 3+KL)elysinh Kyt + sinh Ky' E( 2 ~ 2 )eKfe 2Ky'dYI?

+C2 1+C2 2 )e 2y+ C2 2c C~~e7 snh Kyt

y 

Y

-K .1 sinh Hy' + e ysinh Ky' C )+C+ )Y-

+ 2 C2 1 2 2 e - +K (168)

-F2 (y)e I_ - 2 (y) e-K + 3 (y)ye Ky
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where

F(Y) [L3 + KL4 - C C21 + (C21 + C22 )yJeKy (169)

and

F =K Ky
F3(Y) = (C1 + C22)e~

Inserting (165) and (168) into (164)

(B(y,y')F(y',y)dy 1 + (y)[f (2K,-) -fo (2Ky)

L.~c 2 K M2 i~~e 4  0

+ F1 (y)[f1 (2K.,-)-fI(2K,y)] (170)

2(T- lv)e" F 2(y)[fo(o,y)-f 0(-2K~y)]+F3(y)f (-2K,y~e

The desired expression (163) is obtained from two applications

of (170).

The subscripts on B in (163), as well as the complex con-

jugation, are obtained by applying the same subscripts, and

complex conjugation, to the quantities M1 and M2 appearing

explicitly in (170). The same rule applies to A with subscripts

and complex conjugation applied to L3, L4, C21 , and C22 appear-

ing explicitly in (166) and (169).

In the last term of (157) the expression to be evaluated

is, because of (151), (152), and (154),

ffH4 (K, y, yyIs(,IIdw K4JN (x) QP(y, x) Gr* (y, x) dx, (171)

where

0
G(y,x) -JA(y,y')g(yt,x)dy'. (172)

In (171) the subscripts on G(y,x) and the complex conjugation

actually occur through A(y,y') in (172).
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With the aid of (155) the expression (172) can be written

G(y,x) = -L3g(y,x) - L4g (y,x) (173)

+(C2 1-C 2 2)eKyYeKY x)dy+(C2 1+C2 2 ) eK °eKy ,)dy

From (153) it follows that

G(y > x) (snh Ky + L4 cosh Ky)eKx + 1 (C -C )eKlnh  e2KYdy

(174)
* 1 ~~~Kxj YKy tt, .1

x

+ K(A1 + A2 ) eK(y+x) fe-Y'sinh Ky'dy'
y

Go (y)eKx + Gl(y)xemx

where

K 21+C22) K ye) + 27CK -ye-

-L sinh Ky cosh Ky3 K (175)

and

(C -C )~ e-Gz(Y) 2K (21-022)eI

It also follows that

G(y<x) =-(LK.+ L4)e~y sinh Kx + ( 2 1-C2 2 )e-KY sinh KxJ
y e2Kdy'

+ [s ( 2 1 C2 2 )eKYnlnh Kx dy +eKx j sinh Ky' dy'J (176)

- G2(y)eKx - G2 (y)e
-Kx + G3(Y)xe -Kx, (177)
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where

G, y 21 (C -C -y~ -

and

It follows from (171), (17J4), and (176) that

K4 f'IN2(x)[G p(y)e~x+G p(Y)xe1x][G' r(y)e~x+G* (y)xe~xJdxopq lq orsirs

K 4KI H 0(y)[f0 (2K,c)-f 0 (2K,y) ]+H1(y) Ef1(2K, )-f1(2K,y)]

+H2(y)[f2(2K,-)-f2(2K,y)]+H 0_ (y)f (-2K,y)+H o(y)f (o,y)I

+Ho~y~ (2~y)Hloy~f~o~)+Hl~yfl(K~y+H2(y~2(2~y) (178)

where

H(y)-G (y)G* (y, (y). -= Gpq(y)G* (y)-pq(y)G*(y),

=p G2pq(Y0G3rs(Y ~p() 2rs()

H mY-2qYGr~)GpqyGr~)Hy G (y)G*rs(y). (179)

When there is no sphere, the magnetic field gradient is

that due to internal waves for the case in Ref. 1 where the
field is observed below the sea surface. When the gradient

contains a vertical (y) derivative it will have a discontinuity
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at the sea surface, but if the derivative is in the horizontal

(x or z) direction it should be continuous at the surface.

Thus, the quantity 013;13 given here for the case of no sphere

should agree with (259) in Ref. 1 when both are evaluated at

y = 0 if the assumptions that were made in Ref. 1 in deriving

(259) are also made here. These assumptions include the Milder

hypothesis and a large tow speed, both of which have already

been adopted here. In addition the assumption of an isotropic

internal wave excitation function with power law dependence on

wave number was also used in Ref. 1. That is, it was assumed

that

I(K) = CK- p

For the case of no sphere, as already observed in con-
nection with (157), J reduces to J 4' and at y = 0, according

to (175), J4 reduces to

J P (w,K,o) = K 4Glpq(O)Grsf2(2K,- -)pq;r,s p r

K K2 (C C ) ( C ..C* ) 2,-
K2 22

16 0-2 -2 ) + CI- +T rsf(2K,).

K~i--+ KT3Pq - iT2pq) K 3rs2rs 2'

(180)

For the last expression in (180) the rules for substituting

Ti in the case of no bubble were used in (167).

According to the definition of the Ti in connection with
(130) and the dependence, given by (113) in Ref. 1, of B on
OD ,and by (120) in Ref. 1 for the 1p vectors on a, it is a

straightforward matter to verify that

T1 1 3 = 0, T2 1 3 
= B0 Kcos(w-a)sin(w-a)cos w cos D' (181)

T 3 1 3 = -B o cos (w-) sin (w-a) sin D"
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If (181) is substituted into (180) it is found that

2a2 P 2B2K
4

wKo) 0 +3cos2 )2 g13;13 (w,a)f2(2K,- ), (182)

where gl3 ;1 3 (w,a) is defined by equation (182f) in Ref. 1.

Finally, if (182) is used in (158) along with (179) it

will be found that the result agrees with (259) of Ref. 1. In

order to complete the verification it is necessary to use (159)
to identify f2 (2K,--).
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APPENDIX A

PROOF OF THE DIRICHLET GREEN'S FUNCTION APPROXIMATION

The notation to be used in the following is consistent

with that of the preceding text. Namely, Gs(r,r') is the exte-

rior Green's function for S (Gs vanishes on S) and Gp (r,r') is

the Green's function for Vp (Gp vanishes on P). In fact, with

Go(r,r') the free space Green's function given by

1r 1 -'G° W

GDP(r,r') - Go(r,r') - G (,r')

and

GDrr, Gor, - a (A-1)
G ~~' ~ ~41r a -2a2rrcosy+r2r 2  A

In addition, operators DS and D are defined by

DsGi _Gs( ")r" Gi(r",r')ds" (A-2)
ar"--

S

and

DpGif aGs("r Gi (r",r)ds". (A-3)

S

According to Green's theorem (A-2) implies that DsGi is equal

to Gi on S and satisfies Laplace's equation outside of S.

According to (A-3) DpGi is equal to DsGi on P and satisfies

Laplace's equation in V

A-3
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Let

Gl(r,r') = GDS(r,r') - GDS(r,r'). (A-4)

Then G1 vanishes on P but not on S. However, GI-DsG 1 vanishes

on S but not on P. Further, G1-DSG 1 + DpG 1 vanishes on P but

not on S, and G1-DsG 1 + DpG1-DsDpG 1 vanishes on S but not on P.

Continuing the iteration ad infinitum leads to a Green's func-

tion GD(r,r') defined by

dD

GD(rr') = (1-Ds) Dn GD (1-Ds)(1-Dp)-G (A-5)

n=o

if the series converges. The limiting function vanishes on

both S and P, as required for the Dirichlet Green's function

appropriate to the region VPS bounded by P and S.

Convergence of the series in (A-5) occurs in the sense of

any norm for which

I IDpll I . (A-6)

For any function f(r")

Df= a2f BGs(rr") f(r")Id S1

2 f [-a+^ Aaa r cos y + r -ar cos y fd27 a2 2 ^ 3/2 +  2a c2 3/2 ] 11
= r +a -2ar cos ) a(a 2-2ar cos y+) r"a

(a S;) r + r

47r f i+ 2a0 8 /2/ f+im1/ / a-a
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so that

lIDp fill i (A-7)

(,_a) 2

if the norm of a function is the maximum value of the function

on S. Convergence is then guaranteed as long as
a ia (A-8)

In forming the series that converges to G(r,r') each step

adds a term one order higher in . In fact, the series begins

with G0 , the free space Green's function and G1  (1-Ds)G o .

Thus, the lowest order approximation to GD(r,r') is G1 (r,r')

which is also given by (A-4).

By definition,

AG GD-GDP.

Hence,

AG G 1-GDP,

so that, according to (A-l) and (A-4), AG is given approximately

by (60), as asserted earlier.

A-5
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APPENDIX B

CONTRIBUTION OF THE PARTIAL ELECTRIC FIELD
CURRENT TO THE MAGNETIC FIELD

In the following it will be shown that the partial electric

field contribution JE to the current given by (47) results in a

contribution of higher order than a to the magnetic field in-

side the sphere. Then it will follow, once again, that only

the term in (47) need be considered.

The potential *' whose gradient determines J. satisfies

Laplace's equation inside VS and the boundary condition

I- r m a = -r (Bo " 7) lr (B-1)

on S. From (B-l), (53), and (64) it follows that, to terms of

order less than a,

(i 3 1i (1 r
~ ~r=a a + i r - P, (B-2)

where

(Bo V) !Plr=a" (B-3)

In obtaining (B-2) terms of order a have been dropped as usual.

D

Now, for any two constant vectors kI and k2 the quantity

- given by

~II~ - ~ Icj)(ir - k2) 31  (B-14)

is a surface spherical harmonic of the second degree [3]. Also,

If for any constant vector k the quantity "  given by

" (B-5)
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is a surface spherical harmonic of degree one, and, of course,

any constant is a surface spherical harmonic of degree zero.

It follows from (B-2), (B-4), and (B-5), for

* B )
Z(o,e) = a '

Zl(oe) = r "' (B-6)

and

that

n+2

o = (n+l)rn+l Zb(¢'e). (B-7)

In (B-7) the quantities Zn (o,') are surface spherical harmonics

of degree n.

From (B-7) it follows that

Vo' OW2 V+2 Z(0,e)i - VQZn(oe)

E ( [n -r n+l

so that

2 (a +2 ir X VQZn(oe)* (B-8)
ir x Vol n+l

nal

Thus,

rr-a x + I (B-9)
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where

and

x V *r 0(-r B 0)
2 _r 3a

From

V(r *P) -P =V(rir P) t ~ +rV(i. *P

a (r' + V~ (r

it follows that

Since (B-10) is an identity that holds for an arbitrary con-
stant vector P it can be applied to 1 1with the result that

2 3a ir X [r B 0 VAr O (r * )f

x Ci i x%)V + U~ *i ~zB 0 . (B-li)

It is useful to define

v B x ,A-V x V, X =vx B0  (B-12)

Then

* 1 -,B m 2 *(B-13)

From (B-il) and (B-12) it follows that

+ (i Wi Y) 2_( 0 ' (B-14)
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From the form (B-4) it can be seen that each cartesian

component of I is a sum of a spherical harmonic of degree two-2
and a spherical harmonic of degree zero (constant). A simple

calculation shows that the spherical harmonic of degree zero,

in fact, vanishes. Thus, I2 is a vector whose cartesian com-

ponents are each spherical harmonics of degree two. Because

of (B-10) it is apparent that 1I is a vector whose cartesian

components are each spherical harmonics of degree one.

Then, as indicated by (52), (51) becomes

-Elr=a E -Io T71 Pn(cos ) In(',')d1a

n=l 0

- a + 12(0e)] (B-15)

by virtue of an identity given in Ref. 3, P. 137. It follows

from the definition of 1 in (B-9), from (B-10), and from (B-Il)

that

E "o r 15 + Zr X (r*B~~-

(B-16)

In accordance with (38) and the earlier remark, in connec-

tion with (48), concerning the meaning of IE' the only contri-

bution of JE to the magnetic field in VS is proportional to the

radial component of IE" It follows from (B-16) that this con-

tribution is zero up to terms of order less than a 2; thus, as

promised, the contribution of JE to the magnetic field can be

ignored in calculating the field to the first order in a.
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APPENDIX C

SUMMARY OF FORMULAS FOR COMPUTING THE SPECTRA
OF MAGNETIC FIELD GRADIENTS

Formulas needed for calculating the magnetic field gradi-
ent spectrum appear in the main text. In fact, it is only
necessary to apply the following equations, considered in the

following order rather than the order in which they were orig-

inally introduced, to establish the necessary computational

logic: (156), (157), (151), (160), (161), (159), (163), (170),

(166), (169), (167), (178), (179), (175), (177), (135), (124).

The key parameters in the calculation are given by equa-

tions (136), reproduced here for convenience:

O 00
LB)-/- (K • Bo Ay+KA )B

2K 2 .2o *BK(A K)+Kz(A2  -- [K L

3 --aK0(A 3  ")(B* K)+[K(Af K)+K(A - )B oy' Ay+ A3yBoy

L2K

L ( )B (136)

2K oy

MI , - [(Kzrli-Kxrlz)K x+(Kz r2x-K x r2z )K z ,

M iou0,., r +KF r
M2  z3x x 3z

C-3



_77I

For purposes of comparison and interpretation the various quan-

tities, (136) can be expressed in terms of geometrical and phys-

ical parameters that were introduced in [1]. Each of those

* quantities is a function of two indices that are determined by

the subscripts on the symbol for the magnetic field gradient

spectrum. The indices of interest are the pairs 12, 13, 23;
= for these index pairs the following quantities appearing in

(136) are defined:

*(A 0. (A, -l~ K sin(w-2t), (A,-) 2  0,

(A * 9 12 = 0, (A2 913 =K cos(w-2t), (A2 p23 = 0

(A3 - Pl2 = K cos(w-t), (A3 P 13 = 0' (A 3' 23 = K sin(w-t),

A y1 cos a, A 1Y13 =0, A ly23 m-sin a,

A sin a, Ay 1  0, Ay 2  Cos a, (0-1)

3Y1 0, A 3y13 =0, A 3y23 0

lx2= 0, rl 3 = -B0 sin cos 2ac, rl 2  0,
lx12 oX1 0SDO~t r D lx-2s
r =- -2B c Bz1 sin Din2a, r1 ~ 3  2B costDsina,

-zl Bco"Da =z3 - 0si l2=

r~x2 B0 os ~D cosa, r 2x13 B sn$Ds in2 t, r 2x2 3= -B ,cos"Dsint,

r 212 -B0 cst Dsifla, r 2Z13' B 0sin D cos 2 m, r 2z23= -B 0cos $Dc OSO,

r U2 -2 0sin~sina r3x13 'BOC0SODC os 2a, r 3 x2 3 ' -2B 0sin D coSas

r 3z2 '2B 0sinD oar 3Z13' -B ScDs in2a, r 3 z2 3  -2B 0sinODs ina,

where

2B
B-

1 + 3 Cos *D
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Equations (C-i) used in (136) define all of the Li and Mi

corresponding to the subscript pairs 12, 13, 23. These are the

parameters to be used when the sphere exists. In the absence

of the sphere the Mi are set equal to zero, L1 and L are re-
1 1 3

placed by au 0 1T and ap 0T3 , and L2 and L4 are replaced by iaoT 2

and ioso T , where

Tlv1 = T1 3 = T12  = 0, T1 l2  
2
0 cos(w-a)cos w cos

T1 32 a -K2 B0 sin (w-) cos w cos *D' T2 2 1 = T2 2 3 = 0,

T = KBoS 2(w-c)cos w cos D' T2 1 2 = -KBocos (w-a)sin D

T213  KBo sin 2(w-a)cos w cos *D' T222 = -KBocos w cos D

T231 - KBO sin 2(w-a)cos w cos 0D' T232 - -KBosin (w-c)sin OD'

T233 = KB0 sin2 (w-a)cos w cos *D' T312 = T332 0 0,

T311 = -B0 cos2 (w-)sin ,D' T313 = -Bo sin 2(w-c)sin *D"

T 321= -B0 cos(w-a)cos w cos OD' T 32 2 = B sin OD'

T323  -Bo0 sin(w-)cos w cos ODI

T - B sin 2 (w-a) sin *D' T333 = -B0 sin 2 (w-a)sin OD' (C-2)

The quantities Lilu , MiVV or, in the case of no sphere,
the Ti U are used to define the quantities Col and Co2, given

by (161), the quantities C21 and C22 given by (167), the

functions F (y) and FI(y) given by (166), the functions F2 (y) and

F3 (y) given by (169), the functions G0 (y) and G1 (y) given by

(175), and the functions G2 (y) and G3 (y) given by (177). For

I convenience these equations are all repeated, as follows:

C02 l ( MK +M MNq Ir pq

o2 " (MlpqM rs+M2pqIrs) (161)
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c_ 1 (L1 + KL 3 )C21 2K 3-

2 (L2 + K2 L ) (167)¢22 2 4

F(y)K[(L- sinh Ky + L4 cosh Ky +1 (C1 )yeKY
o 3 K21_1C22

K 1 K

+ f (C2,C 2) e (166)

FlY 1 _ (C21-C2)e-Ky

F(y) [L + KL 2 + (C2 + C 2 )y]e Ky  (169)2RY 2 K[ 3 +K 4 _ K C21 21 C22

F3(y) = K- (C21 + C22 )eKy.3 Ky 21 2

G (y) e + 2y (21C22(siK Ky ye -KY)

-L snh Ky _ cosh Ky (175)3 K NLcs~

Gl(Y) = (C21-C22)e
-Ky.

1 2 Ky 2. 1 -C2L2K(21C2)~

2(y)= [2 1- - 1- L ~1(C +C0 eK
2 2 K2  K 4~ K 21 22 .

G3(Y) _ - (C2 1+C22 )eKY" (177)

In addition, it is convenient to define
I1

D (-- + M2 ). (C-3)

For the case in which

I(K) - CK- p

C-6



equation (156) for the magnetic field gradient spectrum can be

written

vii;rs Wvv;r vu~;r(c-'rK]d

* ~2C (~)= 2 K(p+l~To (ct+8-rK+ (o)

+i~j KPl[Jl (c+$-7rK)+J~lrs C~8i~)d

where (C-4~)

j(O (w,K) =K'[ GO if (-2K,y)-2G Ga if (o,y)
vlp;rs L2vi 2rs o vp. rs o

+ (G vlG*r - G0  GOr )f (2K,y)

+ G GOr f (2K,--a) - (G vjGr+G G*rs)fi(0,Y)

2rsos lv ors ovPG2rs IPKY
+(G GO ~~+G * G G f(Ky

+(Gvi r, G 2s lvrs ovu irs fjK

+(G Ga +-G Ga )if (2K,-)+G * (K0]

3vip 3rs lvii irs 2' lvvplrs 2j

and

i(1) (w,K)=[(C + C )e 2Ky _ (D* pa + D F )e Kyl f (-2Ky)
vIi;rs 01 o2 vp. 2rs rs 2vpe 0

+(Da IF* + D F )e-Ky f (o,y)vp 2rs rs 2vu 0

)e -2K + D F* + DO F )e-Kylif(2Ks-y)
+[C. C2vi ors rs ovp.

+0)eK D (DF Fe ' +y f~ F0-2eKKi 0(Ki

+['v~ *rs + rs F3vii )eYi 1 2K

I, C- 7



-[DUF* + D*, Fl ,)e Kyj l2K
irs rs vi Jf(Ky

L[(vU~r + rs, Flv,,ei f f(2K,--o), (C-5)

expanded in terms of the moments defined by (159), i.e., the

functions

fI(K,y) Jx eKXN2 (x)dx.

y

To save space, in (C-5) the y dependence of the functions

FP(y) and G1 (y) is not indicated. In (C-4) the integrand is
(0) (1)separated into the two functions j(o) and J because in the

absence of the sphere J(1) vanishes leaving only j(o) suitably

modified by the rule requiring the replacement of the quantities

Li with Ti and the omission of the M .
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